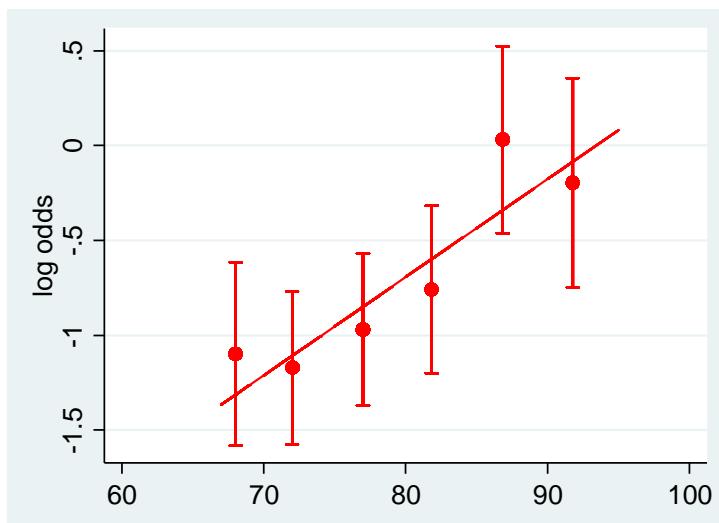
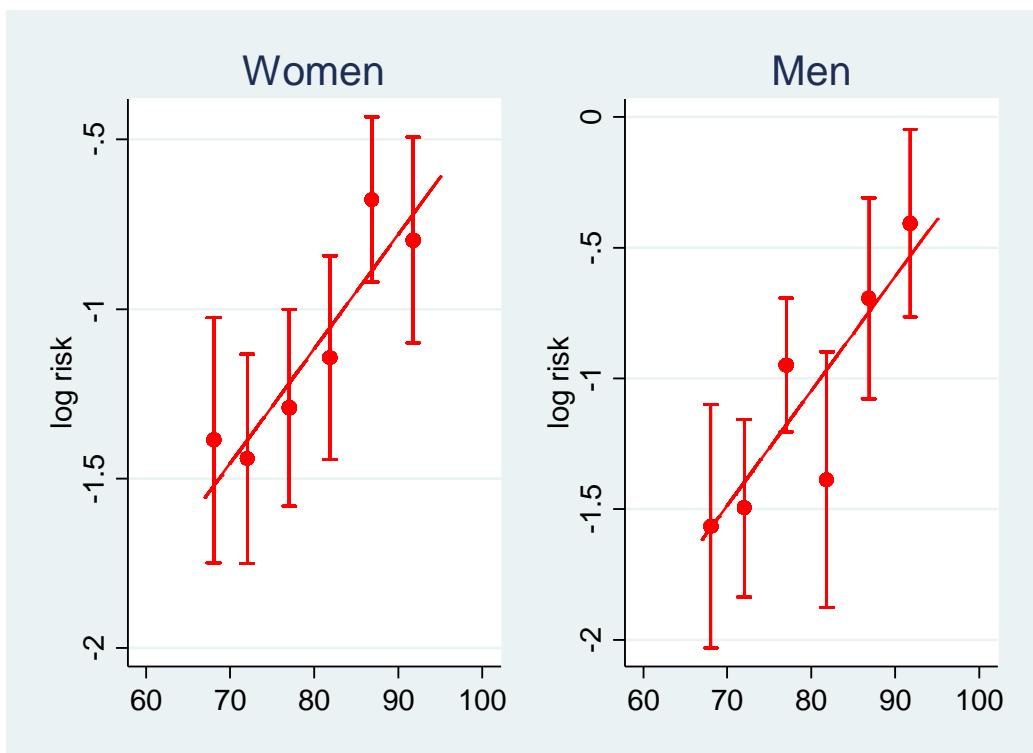


PhD Course in Basic Biostatistics
Spring 2015
A short solution


Question 1

The output of the logistic regression with the age group as explanatory variable contains an estimate of the odds for falling among "under 70 years" of 0.33 (95% confidence interval, CI: 0.21-0.54), and odds ratio for the groups


70-74 years: 0.93 (0.50-1.74)
75-79 years : 1.14 (0.61-2.13)
80-84 years: 1.40 (0.73-2.70)
85-89 years: 3.10 (1.55-6.18)
90 years .. : 2.46 (1.18-5.13)

as compared to the reference age group "under 70 years". The odds rate cannot be interpreted as a relative risk as the risk of falling is not a rare event. The odds of falling, and therefore also the risk of falling, generally increase with the age of the woman.

Figure 1 shows that it is reasonable to assume that the log-odds depend linearly on the woman's age. Figure 2 shows that it is also reasonable to assume that the log-risk depends linearly on the woman's age.

Figure 1 Log-odds against age group for women.

Figure 2 Log-risk against the age for women (left) and men (right).

Question 2

In the binary regression model for the relative risk the women of age 70 is chosen as reference persons. In this case the regression parameters in the model are

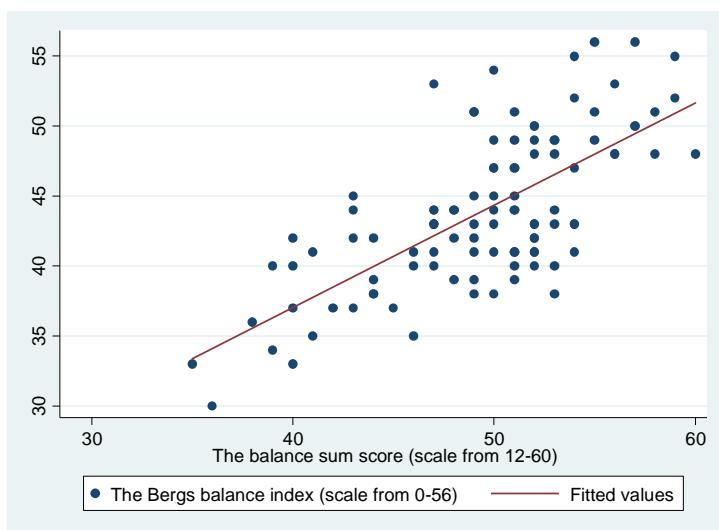
- 0.23 (0.19-0.29) is the risk of falling for woman of age 70.
- 1.03 (1.02-1.05) is the relative risk of falling for two women where one is 1 year older than the other.
- 0.97 (0.71-1.32) is the relative risk of falling comparing men to women, both of age 70 years.
- 1.01 (0.99-1.04) is the ratio of 1 years relative risk for men as compared to women.

The age dependency is not statistical significant different between men and women ($p=0.42$).

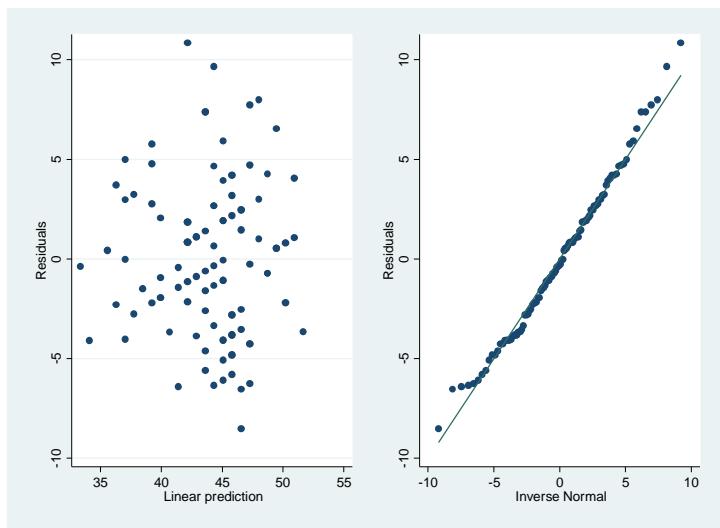
The age adjusted relative risk of falling comparing men to women is 1.07 (0.88-1.30).

Question 3

The risk of falling within each of the balance categories is


- below 40: 0.71 (0.60-0.82)
- 40-41: 0.53 (0.40-0.65)
- 42-43: 0.47 (0.40-0.58)
- 44-45: 0.40 (0.28-0.52)
- 46-50: 0.33 (0.27-0.39)
- 51-60: 0.13 (0.10-0.17)

Chosen the “above 50” group as the reference we obtain the risk differences:


- below 40: 0.57 (0.46-0.69)
- 40-41: 0.39 (0.26-0.52)
- 42-43: 0.34 (0.23-0.45)
- 44-45: 0.27 (0.14-0.39)
- 46-50: 0.19 (0.13-0.26)
- 51-60: 0.00 (reference).

Question 4

The Berg Balance index is plotted against the self-evaluated balance sum score in Figure 3. There is approximately a linear relationship between the two balance score. The Berg Balance index could be predicted from the estimates from the linear regression models with the intercept of 7.76 (0.45-15.07) and slope 0.73 (0.58-0.88). One could quantify the difference between the observed and predicted Berg Balance index – the residual – but we will not go into further analyses here.

Figure 3 Scatter plot of the Berg Balance index against the self-evaluated balance sum score.

Figure 4 Plot of residual against the predicted values, and QQ plots of the residuals.

Question 5

The proportion of persons with a self-evaluated balance score below 48 among those with a low Berg Balance index (the sensitivity) is 0.57 (0.39-0.73), corresponding to 21 out of 37 persons.

The proportion of persons with a self-evaluated balance score 48 or higher among those with a high Berg Balance index (the specificity) is 0.83 (0.72-0.91), corresponding to 54 out of 65 persons.

Do-file

```
*****
* Solution.do
* Solution for the exam Basic Biostatistics Spring.
* Erik Parner. 13-04-2015.
*****  
  
cd "D:\Teaching\BasicBiostat\Exam"  
  
capture log close
log using "Solution.txt", replace text  
  
use balance, clear  
  
*****
* Question 1.
*****  
  
recode age (min/69=1 "under 70 years") ///
(70/74=2 "70-74 years") ///
(75/79=3 "75-79 years") ///
(80/84=4 "80-84 years") ///
(85/89=5 "85-89 years") ///
(90/max=6 "90 years or older"), generate(agegr)  
* We shall only use agegr2 when plotting. There are several
* ways of constructing a variable with the mean age value
* within each age group, here is one short:
bysort agegr: egen agegr2=mean(age)  
  
* Logistic model with agegr for women.
logit fall i.agegr if(sex==0), or
predict logoddsgr, xb
predict se, stdp
gen lower=logoddsgr-1.96*se
gen upper=logoddsgr+1.96*se
logit fall c.age if(sex==0), or
predict logoddsline, xb
twoway (line logoddsline age if(sex==0), lco(red)) ///
(rcap lower upper agegr2 if(sex==0), lco(red)) ///
(scatter logoddsgr agegr2 if(sex==0), msy(O) mco(red)) ///
, scale(1.5) legend(off) ytitle("log odds")
drop logoddsline logoddsgr se lower upper  
  
* Binary regression for the relative risk with agegr for women.
binreg fall i.agegr if(sex==0), rr
predict logoddsgr, xb
```

```

predict se, stdp
gen lower=logoddsgr-1.96*se
gen upper=logoddsgr+1.96*se
binreg fall c.age if(sex==0), rr
predict logoddsline, xb
twoway (line logoddsline age if(sex==0),lco(red)) ///
    (rcap lower upper agegr2 if(sex==0),lco(red)) ///
    (scatter logoddsgr agegr2 if(sex==0), msy(O) mco(red)) ///
    , scale(1.5) legend(off) ytitle("log risk") ///
    title("Women") name(graph1, replace)
drop logoddsline logoddsgr se lower upper

* Binary regression for the relative risk with agegr for men.
binreg fall i.agegr if(sex==1), rr
predict logoddsgr, xb
predict se, stdp
gen lower=logoddsgr-1.96*se
gen upper=logoddsgr+1.96*se
binreg fall c.age if(sex==1), rr
predict logoddsline, xb
twoway (line logoddsline age if(sex==1),lco(red)) ///
    (rcap lower upper agegr2 if(sex==1),lco(red)) ///
    (scatter logoddsgr agegr2 if(sex==1), msy(O) mco(red)) ///
    , scale(1.5) legend(off) ytitle("log risk") ///
    title("Men") name(graph2, replace)
drop logoddsline logoddsgr se lower upper
graph combine graph1 graph2
graph drop graph1 graph2

```

* Question 2.

```

generate age70=age-70
binreg fall i.sex##c.age70 , rr
binreg fall i.sex c.age70 , rr

```

* Question 3.

```

recode balance (min/39=1 "below 40") ///
    (40/41=2 "40-41") ///
    (42/43=3 "42-43") ///
    (44/45=4 "44-45") ///
    (46/50=5 "46-50") ///

```

```
(51/60=6 "51-60"), generate(balancegr)
tabu balancegr fall, row
binreg fall ibn.balancegr , rd nocons
binreg fall ib6.balancegr , rd
```

```
*****
```

```
* Question 4.
```

```
*****
```

```
scatter berg balance
scatter berg balance, jitter(1)
regress berg balance
twoway (scatter berg balance) ///
    (lfit berg balance)
predict fit if e(sample), xb
predict res if e(sample), res
scatter res fit, name(graph1,replace)
qnorm res, name(graph2,replace)
graph combine graph1 graph2
graph drop graph1 graph2
```

```
*****
```

```
* Question 5.
```

```
*****
```

```
gen lowberg=(berg<42) if(berg<.)
gen highberg=(berg>=42) if(berg<.)
gen lowbalance=(balance<48) if(balance<.)
gen highbalance=(balance>=48) if(balance<.)
tabu lowbalance lowberg
ci lowbalance if(lowberg==1), binom
ci highbalance if(highberg==1), binom
```

```
log close
```