
Random Coefficient Model
More complex designs

Last time: Multi- and Univariate repeated measurements

ANOVA

So far, when dealing with the statistical analysis of repeated measurements,
we have considered:

Multivariate repeated measurements ANOVA:
◮ No missing observations and less than 6-7 time points: Exact tests
◮ Missing observations and less than 6-7 time points: Approximate

tests

Univariate repeated measurements ANOVA:
◮ No missing observations and more than 6-7 time points: Exact tests
◮ Missing observations and more than 6-7 time points: Approximate

tests

In none of the above mentioned methods is the ordering of the
time-points taken into account.
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Random Coefficient Model
More complex designs

Today: Time as a covariate and more complex designs

◮ Example: Growth of preadolescent girls

◮ The Random Coefficient Model (RCM)

◮ The Random Coefficient Model in Stata

◮ Example: Orthodontic measurement over time for boys and girls

◮ Example: Diet and plasma glucose for diabetic patients

◮ Analysis of summary statistics

◮ More complex designs: Cross-over trial with repeated measurements
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Random Coefficient Model
More complex designs

Time as a covariate: Taking the ordering into account

Consider the following two data sets (mean curves):

Time Time

◮ In fact the observations are identical. The only difference is that the
time-points have been interchanged.

◮ An analysis based on the multivariate or univariate repeated
measurements ANOVA would result in identical tests regarding the
group difference (here there is no difference between the groups).

◮ For the second data set, however, if we take the ordering into account
it is not hard to imagine that there is a difference between the two
groups. To take the ordering of the time-points into account we need
to describe the relationship between the response and time.
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Example: Growth of preadolescent girls

We consider growth of preadolescent girls and how it depends on their
mothers height. For 20 girls we have measurements of the height (cm) at
6, 7, 8, 9, and 10 years of age along with their mothers height classified as
short (< 155 cm), medium (155 − 165 cm), or tall (> 165 cm).

Mother Girl 6 years 7 years 8 years 9 years 10 years
Short 1 111.0 116.4 121.7 126.3 130.5

...
...

...
...

Medium 7 116.0 122.0 126.6 132.6 137.6
...

...
...

...
Tall 14 120.4 125.0 132.0 136.6 140.7

...
...

...
...

Question: Does the growth of preadolescent girls depend on their mothers
height?

Bo Martin Bibby, Department of Biostatistics ANOVA and repeated measurements, Day 3 4/48



Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Growth of preadolescent girls: Individual curves
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Growth of preadolescent girls: Grouped individual curves
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Growth of preadolescent girls: Mean curves
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Growth of girls: Linear regression for each subject
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Illustrating the random coefficient model
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Assumptions

A linear regression model with randomly varying slopes and intercepts:

height = α+ β · age+ e

Random intercept:

α = normal with mean αS (for girls with short mothers), and sd σα

Random slope:

β = normal with mean βS (for girls with short mothers), and sd σβ

Population parameters:

◮ Short: αS, βS

◮ Medium: αM, βM

◮ Tall: αT, βT

Variation around the line:

e normal with mean 0 and standard deviation σ

Bo Martin Bibby, Department of Biostatistics ANOVA and repeated measurements, Day 3 10/48



Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Comments
We could just estimate the intercept and slope for each subject and
compare the groups based on these estimates:

◮ That would constitute an analysis based on summary measures
(something we will return to later today).

◮ We would probably want to compare the groups using a MANOVA
model since the estimated intercept and slope are highly correlated (or
maybe an ANOVA model based only on the slopes).

◮ The estimates for the population parameters based on the random
coefficient model will be identical to the means of the individual
intercepts and slopes, but the standard errors will be (potentially
much) bigger.

◮ The random coefficient model uses all the data directly to compare
the groups, whereas the analysis based on summary statistics excludes
a lot of information by forgetting that the intercepts and slopes are
estimated, with all the uncertainty that implies, when comparing the
groups.

Bo Martin Bibby, Department of Biostatistics ANOVA and repeated measurements, Day 3 11/48



Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Growth of preadolescent girl: Parameter estimates

The estimated slopes and intercepts for the three populations:

α̂S = 81.3 [78.5, 84.1], β̂S = 5.3 [4.9, 5.6]

α̂M = 83.0 [80.4, 85.6], β̂M = 5.6 [5.2, 5.9]

α̂T = 83.1 [80.5, 85.7], β̂T = 6.2 [5.9, 6.6]

A test for equal slopes gives a p-value of 0.0001 and so we conclude that
there is clear evidence in the data against the hypothesis of equal growth
in the three populations.

The hypothesis of equal growth for girls with short and medium mothers is
accepted with a p-value of 0.21, whereas the growth is significantly bigger
for girls with tall mothers (p = 0.003 compared to medium mothers).

The standard deviation estimates are:

σ̂α = 2.76, σ̂β = 0.37, σ̂ = 0.69
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Growth of preadolescent girl: Model fit

Age (years)

H
ei

gh
t 

(c
m

)

110

120

130

140

150

6 7 8 9 10

1 2

6 7 8 9 10

3 4

6 7 8 9 10

5 6

7 8 9 10 11 12

110

120

130

140

150

13

110

120

130

140

150

14

6 7 8 9 10

15 16

6 7 8 9 10

17 18

6 7 8 9 10

19 20

Individual RCM

Bo Martin Bibby, Department of Biostatistics ANOVA and repeated measurements, Day 3 13/48



Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Model validation: Observed and expected standard

deviations and correlations

Observed:
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Growth of preadolescent girl: Residuals and conclusions
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Conclusion: No clear deviations from the random coefficient model.

Our best estimate is that girls with tall mothers on average grow

6.2 cm/year, 95% − CI : 5.9 − 6.6 cm/year

when between the ages of 6 and 10 years.

That is significantly more than girls with short or medium-sized mothers.
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Growth of girl: Conclusions regarding the height

We saw that the intercept estimates could not be interpreted. We get the
same model for the data if we subtract 6 from all the ages and consider:

height = α+ β · (age− 6) + e

This does not change the estimates for the slopes, but the intercept
estimates become: α̂S = 112.9 [110.6, 115.3]

α̂M = 116.6 [114.2, 118.5]

α̂T = 120.6 [118.5, 122.8]

We can interpret the estimates as the expected height of girls in the
different groups at 6 years of age.

Conclusion: The growth is different for girls with tall mothers, but already
at the age of 6 years the girls with tall mother are significantly taller than
girls with medium-sized mothers (p = 0.003) who are significantly taller
than girls with short mothers (p = 0.022).
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Growth of preadolescent girl: The analysis in Stata

In Stata you can use mixed to perform the analyzes:

mixed height bn.mother bn.mother#c.age, nocons || ///

girl: age, cov(un) reml

In Stata you can test the hypothesis of equal slopes in all three groups in
the following way:

mixed height bn.mother bn.mother#c.age, nocons || ///

girl: age, cov(un) mle

estimates store model1

mixed height bn.mother c.age, nocons || girl: age, cov(un) mle

estimates store model2

lrtest model1 model2
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Growth of preadolescent girl: Output from Stata

height| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------------+-----------------------------------------------------

mother Short | 81.31 1.339289 60.71 0.000 78.68504 83.93496

Medium | 82.97428 1.239941 66.92 0.000 80.54404 85.40452

Tall | 83.12286 1.239941 67.04 0.000 80.69262 85.55309

mother#c.age Short | 5.268333 .1736548 30.34 0.000 4.927976 5.60869

Medium | 5.567143 .1607731 34.63 0.000 5.252034 5.882253

Tall | 6.248572 .1607731 38.87 0.000 5.933462 6.563681

-------------------------------------------------------------------------

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+-------------------------------------------

girl: Unstructured sd(age) | .3651428 .0858106 .2303698 .5787619

sd(_cons) | 2.760457 .6766459 1.707394 4.463015

corr(age,_cons) |-.4424586 .2556303 -.7998775 .1466397

-----------------------------+-------------------------------------------

sd(Residual) | .6899767 .062986 .5769401 .8251599
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Example: Orthodontic measurements for boys and girls

We consider data on two groups of children (16 boys and 11 girls). At ages
8, 10, 12, and 14 years, the distance (mm) from the center of the pituitary
gland to the pterygomaxillary fissure was measured. Data are from
Potthoff & Roy (1964).

Group Age 8 Age 10 Age 12 Age 14
Boys 26.0 25.0 29.0 31.0

21.5 22.5 23.0 26.5
...

...
...

...
Girls 21.0 20.0 21.5 23.0

21.0 21.5 24.0 25.5
...

...
...

...

Question: Are the growth profiles the same for boys and girls in the age
interval considered in this investigation.
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Orthodontic measurements: Individual curves
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Orthodontic measurements: Grouped curves
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Orthodontic measurements: Mean curves
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Orthodontic measurements: Means and lines
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Orthodontic measurements: Parameter estimates from the

Random Coefficient Model

The estimated slopes and intercepts for the two populations:

α̂B = 24.97 [23.93, 26.01], β̂B = 0.78 [0.59, 0.98]

α̂G = 22.65 [21.47, 23.83], β̂G = 0.48 [0.33, 0.63]

A test for equal slopes gives a p-value of 0.0154 and so we conclude that
the change over time is different for boys and girls.

The standard deviation estimates are:

σ̂α = 1.859, σ̂β = 0.165, σ̂B = 1.613, σ̂G = 0.668,
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Orthodontic measurements for boys and girls: Model fit
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

Orthodontic measurements: Residuals and conclusions
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The estimated expected difference in distance between a boy and a girl
both aged 11 years is

2.32 mm, 95% − CI : 0.75 mm to 3.89 mm

whereas for children aged 14 the estimated expected distance difference is
3.24 mm (95%-CI: 1.53 mm to 4.94 mm).
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

More general problems with repeated measurements I
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Random Coefficient Model
More complex designs

Example: Growth of girls
The Random Coefficient Model
RCM with different variations in groups

More general problems with repeated measurements II

Two common situations where the MANOVA and univariate repeated
measurements ANOVA analyzes cannot be used:

◮ Irregularly spaced measurements: For example visits to a GP

◮ Horizontally shifted curves: For example due to delayed reaction

One possible solution is to include the covariate directly in a repeated
measurements regression analysis, either

◮ In a linear regression

◮ In a non-linear regression analysis: Maybe based on a model of the
dynamical processes

Another is to consider a summary statistic (sum up each curve in a single
quantity). More on this after lunch.
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Random Coefficient Model
More complex designs

Cross-over design with repeated measurements
Summary statistics
Analysis of repeated measurements in complex designs

Repeated measurements in more complex designs

So far we have mainly focused on comparing two or three groups based
on repeated measurements for each individual.

It should come as no surprise that the analysis of repeated measurements
can be extended to more complex designs, such as:

◮ Designs with more than one treatment factor, for example two-way
ANOVA where each measurement is a curve (repeated measurements).

◮ Cross-over trials where all patients are given both treatments and
where the response is a curve.

◮ Double repeated measurements where patients are examined several
times and each time the measurement is a repeated measurements
curve.

Let us consider an example of a cross-over trial.
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Random Coefficient Model
More complex designs

Cross-over design with repeated measurements
Summary statistics
Analysis of repeated measurements in complex designs

Example: Diet and plasma glucose for diabetic patients

Data: 16 patients with type 2 diabetes had their plasma glucose levels
(mmol/l) measured 14 times during each of two consecutive days. The
patients were randomized to either receiving a normal diet on day one
followed by a diet with no breakfast on day two or the two diets in the
reverse order.

Patient Day Breakfast 8 am 9 am 10 am · · · 8 pm 3 am

1 1 0 7.86 7.88 8.36 · · · 7.85 7.06
1 2 1 7.86 11.49 8.15 · · · 8.98 7.82
2 1 0 5.91 8.71 8.77 · · · 6.50 6.52
...

...
...

...
...

...
...

...

Question: Is there an effect of the diet without breakfast on the plasma
glucose level? Is the plasma glucose level more erratic for patients who
receive breakfast?
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More complex designs

Cross-over design with repeated measurements
Summary statistics
Analysis of repeated measurements in complex designs

Diet and glucose for diabetic patients: Individual curves
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More complex designs

Cross-over design with repeated measurements
Summary statistics
Analysis of repeated measurements in complex designs

Diet and glucose for diabetic patients: Mean curves
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Random Coefficient Model
More complex designs

Cross-over design with repeated measurements
Summary statistics
Analysis of repeated measurements in complex designs

Diet and glucose for diabetic patients: Design variables

Again we are interested in the usual factors:

◮ Treatment: Breakfast / No breakfast
◮ Time: Hours since 8:00 am

However, the nature of the design (cross-over trial) has to be taken into
account. This means that we have to consider the factors:

◮ Patient: 1, 2, . . . , 16
◮ Day: 1 / 2
◮ Order: Breakfast - No breakfast / No breakfast - breakfast
◮ Carry-over: Previous treatment - 0, breakfast, no breakfast

Furthermore, we may wish to include some interactions in the analysis: For
example, is the difference between patients the same in the treatment
groups (if not we would include an interaction between patient and
treatment).
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Cross-over design with repeated measurements
Summary statistics
Analysis of repeated measurements in complex designs

Diet and plasma glucose: Individual curves for each diet
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Random Coefficient Model
More complex designs

Cross-over design with repeated measurements
Summary statistics
Analysis of repeated measurements in complex designs

Diet and glucose: Analysis based on summary statistics

When dealing with more complex designs (and often also when dealing with
simple designs) it can be very instructive to make an analysis based on a

◮ Summary statistic: A quantity calculated from each curve

A summary statistic has to reflect important aspects of the problem at
hand:

◮ The average plasma glucose level

◮ Area under the curve (AUC)

◮ Standard deviation of the plasma glucose

◮ MAGE (mean amplitude of glycemic excursions)

Other popular choices of summary statistics include:

◮ Increase over a certain period

◮ The maximum value

◮ The slope in a certain period

◮ Time until the maximum value is attained
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Cross-over design with repeated measurements
Summary statistics
Analysis of repeated measurements in complex designs

Diet and glucose: The mean and standard deviation

As examples of summary statistics let us consider the plasma glucose mean
and standard deviation.
Mean plasma glucose

Day 1 Day 2 Day 1 Day 2
Breakfast Breakfast

Patient No Yes Patient Yes No
1 7.57 8.20 9 7.33 6.63
2 7.46 8.14 10 6.12 6.73
3 7.17 7.51 11 7.19 6.89
4 6.90 7.34 12 9.29 8.82
5 7.80 7.70 13 7.86 7.62
6 6.33 5.46 14 7.95 7.03
7 7.62 8.46 15 6.19 6.56
8 6.68 6.93 16 8.11 8.05
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Cross-over design with repeated measurements
Summary statistics
Analysis of repeated measurements in complex designs

Diet and plasma glucose: Analysis of the mean

In the analysis of the mean plasma glucose, we are interested in whether it
depends on the treatment (breakfast or no breakfast), but we want to take
into account:

◮ Patient: Patients have different natural plasma glucose levels
◮ Order: The response may depend on the order in which the patient

receives the two treatments
◮ Day: There may be some systematic variation between days in a

hospital

In this case we get a mean plasma glucose level that is

0.25 mmol/l, 95% − CI: − 0.04 − 0.53 mmol/l

higher having had breakfast compared to not having had breakfast.

The test for no effect of the treatment results in a p-value of 0.08, and we
conclude that there is no significant effect of having no breakfast on the
mean plasma glucose level.
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Diet and plasma glucose: The mean before and after lunch

Even though there is no significant overall difference in the mean plasma
glucose levels, there is a big difference before lunch:

Before lunch: 1.42 mmol/l, 95%−CI: 1.03 − 1.82 mmol/l, p < 0.0001
After lunch: −0.41 mmol/l, 95%−CI: −0.71 −−0.11 mmol/l, p = 0.0108

Conclusion:
◮ The overall mean plasma glucose is not influenced significantly by not

having breakfast (breakfast - no breakfast: 0.25 mmol/l, 95%−CI:
−0.04− 0.53 mmol/l, p = 0.08).

◮ Before lunch the mean plasma glucose is significantly higher after
breakfast compared to no breakfast (1.42 mmol/l, 95%−CI:
1.03 − 1.82 mmol/l, p < 0.0001).

◮ After lunch the mean plasma glucose is significantly higher after no
breakfast compared to after breakfast (0.41 mmol/l, 95%−CI:
0.11 − 0.71 mmol/l, p = 0.0108).
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Diet and plasma glucose: The standard deviation

The degree of erratic behaviour is to some extend captured by the standard
deviation.

Standard deviation of the plasma glucose

Day 1 Day 2 Day 1 Day 2
Breakfast Breakfast

Patient No Yes Patient Yes No
1 0.59 1.14 9 1.61 1.06
2 1.03 1.60 10 1.47 1.00
3 1.12 1.39 11 1.48 0.88
4 1.13 1.39 12 1.35 1.18
5 1.18 1.64 13 1.24 1.05
6 1.12 1.17 14 1.43 0.91
7 1.35 1.64 15 1.36 1.02
8 0.79 1.14 16 1.10 1.02
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Diet and plasma glucose: The SD before and after lunch

Again we see big differences in SD before and after lunch (B - no B):

Overall: 0.36 mmol/l, 95%−CI: 0.26 − 0.46 mmol/l, p < 0.0001
Before lunch: 1.07 mmol/l, 95%−CI: 0.82 − 1.32 mmol/l, p < 0.0001
After lunch: 0.01 mmol/l, 95%−CI: −0.13 − 0.16 mmol/l, p = 0.83

Conclusion:
◮ The overall standard deviation is significantly larger after breakfast

compared to no breakfast (0.36 mmol/l, 95%−CI: 0.26− 0.46
mmol/l, p < 0.0001).

◮ Before lunch the standard deviation is significantly higher after
breakfast compared to no breakfast (1.07 mmol/l, 95%−CI:
0.82 − 1.32 mmol/l, p < 0.0001).

◮ After lunch the standard deviation is not significantly influenced by
having breakfast (0.01 mmol/l, 95%−CI: −0.13 − 0.16 mmol/l,
p = 0.83).
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Diet and plasma glucose: The analyzes in Stata

In Stata the analyzes of summary statistics can be done in the following
way:

egen mpgluc = mean(pgluc), by(pt day)

reshape wide pgluc, i(pt day) j(time)

anova mpgluc breakfast pt day order

pwcompare breakfast, eff

|Contrast Std. Err. t P>|t| [95% Conf.Interval]

-------------------------+------------------------------------------------

breakfast |

Breakfast vs No breakfast|.2456696 .1324916 1.85 0.085 -.0384966 .5298358

Note: Look only at the test corresponding to breakfast as for example
the effect of order has to be tested against the variation between patients.

anova mpgluc order / pt breakfast day
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Choice of summary statistics

There are a number of considerations that you have to take into account
when choosing a summary statistic:

◮ The summary statistic has to reflect important aspects of the
medical problem at hand

◮ The summary statistic should be chosen BEFORE you look at the
data (should be written in the protocol)

◮ You can easily consider several summary statistics

◮ You throw away a lot of information, when replacing a whole curve
with a summary statistic, so one should consider if the primary
scientific question could be answered based on an analysis of all the
data

◮ Factors that characterize the experimental design and the
experimental circumstances still have to be included in the analyses
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Diet and plasma glucose: Analysis of all the data

Factors of interest:
◮ Treatment: Breakfast / No breakfast
◮ Time: Hours since 8:00 am

Design variables, not of primary interest but should be taken into account:

◮ Patient: 1, 2, . . . , 16
◮ Day: 1 / 2
◮ Order: Breakfast - No breakfast / No breakfast - breakfast

Since we have 14 time points, it is not really feasible to analyze the data
using a multivariate repeated measurement analysis (this would require
estimating 105 standard deviations and correlations).

The univariate repeated measurement analysis only requires the
estimation of one standard deviation and one correlation. There are models
in between the two, as we saw in the last example on day 2.
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Diet and glucose: Results from the analysis of all the data

The test for parallel mean curves for the two diets gives a p-value of

p < 0.0001
Remarks:

◮ The different corrections to the p-value does not alter it to any great
extend

◮ A test for reducing the multivariate repeated measurement model
to the univariate repeated measurement model gives:

Breakfast: p = 0.47
No breakfast: p = 0.80

But a reduction from 105 to 2 parameters results in a VERY weak
test.

Conclusion: There is clear evidence in the data against the hypothesis of
equal development in the plasma glucose after breakfast and no breakfast
(no surprise).
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Diet and glucose: Analysis of all the data in Stata

In Stata the analysis of all the data can be done in the following way:

anova pgluc order /pt day breakfast /pt|day ///

time breakfast#time, bse(pt#day) repeated(time)

Source | Partial SS df MS F Prob > F

---------------+------------------------------------------------

order | .532350565 1 .532350565 0.03 0.8675

pt | 258.045255 14 18.4318039

---------------+------------------------------------------------

day | .108439354 1 .108439354 0.06 0.8177

breakfast | 1.74311433 1 1.74311433 0.89 0.3624

pt|day | 27.5246996 14 1.96604997

---------------+------------------------------------------------

time | 283.663079 13 21.8202369 46.01 0.0000

breakfast#time | 162.269941 13 12.4823032 26.32 0.0000

Residual | 184.95717 390 .474249155
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Diet and plasma glucose for diabetic patients: Residuals
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Analysis of more complicated repeated measurements

designs: Recommendations I

A few recommendations when contemplating setting up a more complicated
design that involves repeated measurements:

Before you have the data:

◮ Formulate the questions that you want to answer based on the
statistical analysis of the data.

◮ Target the experiment to enable you to answer the questions of
interest.

◮ Write down the strategy for analyzing the data - this could involve
summary statistics and/or more elaborate analyzes (in fact the Stata
program could to a large extend be written in advance).

◮ Make sure that you make a note of any special circumstances that
occur during the experiment.
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Analysis of more complicated repeated measurements

designs: Recommendations II

Before you have the data:
◮ If the overall change is of interest then place observation time-points

at the start and late (to ensure that steady state has been reached).
◮ If how you got to the final level is of interest then place the

observation time-points close when things are expected to happen.

After you have the data:
◮ Follow the analysis plan!
◮ If you have a model for the evolvement over time that should be

included in the analysis.
◮ Take into account unforeseen factors that could influence the results.
◮ Get help if you are unsure whether the analysis is correct (these are

very complicated analyzes but only because the data require them to
be).
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